
Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

CAN-4-USB/FXFXFXFXFX/MCP2515

Using ZCAN4USB DLL
Written by Steven D. Letkeman, B.Sc.

2006 Zanthic Technologies Inc.
All rights reserved.

V 1.0.0
Last modified May 24, 2006

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

Copyright 2006 by Zanthic Technologies Inc.
Other products are the trademarks of their respective manufacturers

All rights reserved. No part of this manual may be reproduced, in any
form or by any means, without the permission in writing from Zanthic
Technologies Inc.

Zanthic Technologies Inc. reserves the right to make changes without
further notice to any products herein to improve reliability, function
or design. Although the information in this document has been
carefully reviewed and is believed to be reliable, Zanthic Technologies
Inc. does not assume any liability arising out of the application or
use of any product or circuit described herein. Zanthic Technologies
Inc. products are not authorized for use as components in life support
devices wherein a failure or malfunction of the component may directly
threaten life or injury. Any software or firmware included with or
embedded into this product may contain trade secrets and in order to
protect them you may not decompile, reverse engineer, disassemble, or
otherwise reduce the software to human-perceivable form.

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

Introduction:..4
SetCANBaud...5

Declaring this function in Visual Basic...5
Calling this function from Visual Basic ..5

ResetInterface ...6
Declaring this function in Visual Basic...6
Calling this function from Visual Basic ..6

SendCANMess(age)..7
Declaring this function in Visual Basic...8
Calling this function from Visual Basic ..8
Returned Values..9

RecCANMess(age) ...10
Declaring this function in Visual Basic...11
Calling this function from Visual Basic ..11

GetCANMess(age)..12
Declaring this function in Visual Basic...12
Calling this function from Visual Basic ..12
Returned Values..13

ReadReg(ister) ..15
Declaring this function in Visual Basic...15
Note: Make sure buffer is declared as ByRef..15
Calling this function from Visual Basic ..15

WriteReg(ister) ...17
Declaring this function in Visual Basic...17
Calling this function from Visual Basic ..17

GetNumCANMess(ages) ..19
Declaring this function in Visual Basic...19
Calling this function from Visual Basic ..19
Returned Values..19

ClearCANMess(ages) ...20
Declaring this function in Visual Basic...20
Calling this function from Visual Basic ..20

GetInfo ..21
Declaring this function in Visual Basic...21
Calling this function from Visual Basic ..21

SetFilters ...24
Declaring this function in Visual Basic...25
Calling this function from Visual Basic ..25

New Commands to the CAN-4-USB FX interface ...26
EnableTS...26

Declaring this function in Visual Basic...26
Calling this function from Visual Basic ..26

DisableTS..27
Declaring this function in Visual Basic...27
Calling this function from Visual Basic ..27

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

Introduction:
 The Zanthic Technologies Inc. CAN-4-USB/FX device was designed to give a
high speed, low cost, reliable method of allowing your PC to communicate on a
Controller Area Network (CAN) Bus. This document describes the higher level
interface that is used to transmit and receive commands to the CAN-4-USB/FX device
across the USB port. In order for your software to send and receive CAN messages, there
must first be a method to send and receive commands to the device. Packets of data are
sent from the PC to the CAN-4-USB/FX/FX device through the USB port that contain the
commands and data required to use the device. This lower level protocol is independent
of USB in that it simply uses the USB structure to delivery the message and could just as
easily be RS-232 or some other transmission medium. Likewise, the protocol is
independent of any higher level CAN protocol, the data is simply passed through this
layer regardless of what the CAN data means to either your software or another CAN
node on the CAN bus. On top of this layer of commands is a DLL that converts
functions like SendCANMess(age) to the protocol required by the CAN-4-USB/FX
device. This document describes those functions. A sample VB6 program that
demonstrates these can be found on the distribution disk. The source code for all of the
PC programs and DLL’s are included for your use when using the CAN-4-USB/FX
device.

Common Error Messages
 Each of the following functions will return a value (where applicable) within the
following definitions. Note that some of these errors apply to other Zanthic applications
that use threading and other features that are not used in the ZCAN4USBFX DLL

Value Returned Description

1 Success
-1 for generic fail (no board present)
-2 for no response
-3 for improper calling parameter
-4 for improper response
-5 if more than one unit responded
-6 if system is busy at this time
-7 for failed in bulk write
-8 for failed in bulk read
-9 for interface not responding
-10 if interface config file not loaded properly
-11 start driver routine failed
-12 load driver routine failed
-13 could not open device
-14 could not open ISR device
-15 could not open ISR thread
-16 driver already loaded

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

SetCANBaud
 This function will set the CAN controller to a standard CAN baud rate. Should
your requirements not be met by these standard settings you have the option of setting the
configuration registers manually.

The C function within the DLL looks like this
short int __stdcall SetCANBaud(unsigned char InterfaceNum, unsigned char
DeviceNum,short int Baud)

InterfaceNum(ber) will be a value from 0-9 for depending on how many CAN-4-
USB/FXdevices are connected to the same computer. If there is only one device, this
value should be set to zero.
DeviceNum(ber) is a future option for devices that will incorporate more than one CAN
controller on a single device. For now, use the value zero.
Baud is a value given by the following:

Baud Rate # tq BRP Tseg1 Tseg2 Sample
10 10kbps 16 \50 8 4 75%
20 20kbps 16 \25 8 4 75%
50 50kbps 16 \10 8 4 75%
100 100kbps 16 \5 8 4 75%
125 125kbps 16 \4 8 4 75%
250 250kbps 16 \2 8 4 75%
500 500kbps 16 \1 8 4 75%
800 800kbps 10 \1 6 2 80%
1000 1000kbps 8 \1 4 2 75%

Declaring this function in Visual Basic
Pivate Declare Function SetCANBaud Lib “ZCAN4USBFX.dll" (ByVal InterfaceNum
As _ Byte, ByVal DeviceNum As Byte, ByVal Baud As Integer) As Integer

Calling this function from Visual Basic
result = SetCANBaud(InterfaceNum, DeviceNum, baud)
where InterfaceNum, DeviceNum are declared as Byte variables and result and baudlist
are declared as an integer variable
example:
result = SetCANBaud(0,0, 500) ‘ set CAN baud to 500kbps

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

ResetInterface
 This function can be used to reset the CAN controller to a know state should your
software put it in a confused condition. This call will also clear and reset the incoming
message buffers.

The C function within the DLL looks like this
short int __stdcall
 ReseInterfacet (
 unsigned char InterfaceNum,
 unsigned char DeviceNum
)

InterfaceNum(ber) will be a value from 0-9 for depending on how many CAN-4-
USB/FX devices are connected to the same computer. If there is only one device, this
value should be set to zero.
DeviceNum(ber) is a future option for devices that will incorporate more than one CAN
controller on a single device. For now, use the value zero.

Declaring this function in Visual Basic
Private Declare Function ResetInterface Lib “ZCAN4USBFX.dll" _
 (ByVal InterfaceNum As Byte, ByVal DeviceNum As Byte) As Integer

Calling this function from Visual Basic

result = ResetInterface(InterfaceNum, DeviceNum)
where InterfaceNum, DeviceNum are declared as Byte variables and result is declared as
an integer variable

example:
result = ResetInterface(0, 0)

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

SendCANMess(age)
 This function will send a CAN message using the ID, data and message object
that you specify. Before using this function you must have already executed the
SetCANBaud function.

The C function within the DLL looks like this
short int __stdcall
 SendCANMess(
 unsigned char InterfaceNum,
 unsigned char DeviceNum,
 long ID,
 unsigned char CB1,
 unsigned char CB2,
 unsigned char * databytes
)

InterfaceNum(ber) will be a value from 0-9 for depending on how many CAN-4-
USB/FXdevices are connected to the same computer. If there is only one device, this
value should be set to zero.
DeviceNum(ber) is a future option for devices that will incorporate more than one CAN
controller on a single device. For now, use the value zero.
ID is the CAN ID (right justified) with the top 3 bits defined as shown below
CB1 is short for Command Byte 1 and is shown below
CB2 is short for Command Byte 2 and is shown below
Databytes is an unsigned char buffer that stores the data bytes (0 to 8 max)

CAN ID
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

 Standard 11 bit ID
Extended 29 bit ID

^
|
| Bit 29, reserved for future use

^
|
|
| Bit 30, 1=Remote Transmit Request, 0=regular data packet

^
|
|
|
| Bit 31, 1=Extended 29 bit ID, 0=Standard 11 bit ID

 Control Byte 1
7 6 5 4 3 2 1 0 Bit position

 TXP0 11=highest priority 10=High intermediate
 TXP1 01=Low intermediate 00=Lowest
 Transmit wait bit. If this bit=0 the device will attempt to

transmit the message but not wait around to see whether it
was successful or not. If bit=1 the device will wait for a
successful transmission or return an error.

 Not used
 Not used
 Not used
 Not used
 Not used

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

Control Byte 2
7 6 5 4 3 2 1 0 Bit position

 The lower 4 bits define the number of data bytes to

 send (0-8)
 The upper 4 bits define which Message object to
 use to transmit this packet

Declaring this function in Visual Basic
Private Declare Function SendCANMess Lib "ZCAN4USBFX.dll" (
 ByVal InterfaceNum As Byte,
 ByVal DeviceNum As Byte,
 ByVal ID As Long,
 ByVal CB1 As Byte,
 ByVal _ CB2 As Byte,
 ByRef buffer As Byte)
 As Integer

NOTE: The databuffer must be declared as a ByRef because error codes will be
saved to this buffer when returned. See Returned Values for more details.

Calling this function from Visual Basic

result = SendCANMess(InterfaceNum, DeviceNum, ID, CB1, CB2, databytes(0))
where InterfaceNum, DeviceNum, CB1, CB2 are declared as Byte variables and result is
declared as an integer variable. ID is a Long and databytes is declared as a byte array

example:
Dim ID As Long
Dim CB1,CB2 As Byte
Dim databytes(8) As Byte
Dim result As Integer

ID = &H80004120 ‘ example CAN ID with 29 bit format
CB1 = 4 ' enable txwait bit
CB2 = &H03 'use Message object 0 and send three bytes
databytes(0) = &HFF
databytes(1) = &HA
databytes(2) = &H50
result = SendCANMess(InterfaceNum, DeviceNum, ID, CB1, CB2, databytes(0))

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

Returned Values
This function will return a value of

a) 1 for success
b) Negative value for error (see table at the beginning of this document)
c) A value of zero if an error occurred within the actual transmission of the CAN

message. If this is the case, the first two locations of the databytes buffer will
contain 2 error codes as follows

 1) MCP2515 TXBnCTRL register
 2) MCP2515 TEC register

 See the MCP2515 data sheet for more details.

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

RecCANMess(age)
This command will set up a receive message object using the message object

specified. Any messages received through this message object will be stored in a buffer
until the Get CAN Message command is used. The Receive CAN Message command is
only used to set the message object up with the desired CAN ID.

The C function within the DLL looks like this
short int __stdcall
 RecCANMess(
 unsigned char InterfaceNum,
 unsigned char DeviceNum,
 long ID,
 unsigned char CB1
)

InterfaceNum(ber) will be a value from 0-9 for depending on how many CAN-4-
USB/FXdevices are connected to the same computer. If there is only one device, this
value should be set to zero.
DeviceNum(ber) is a future option for devices that will incorporate more than one CAN
controller on a single device. For now, use the value zero.
ID is the CAN ID (right justified) with the top 3 bits defined below
CB1 is short for Command Byte 1 and is shown below

CAN ID
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

 Standard 11 bit ID
Extended 29 bit ID

^
|
| Bit 29, reserved for future use

^
|
|
| Bit 30, reserved for future use

^
|
|
|
| Bit 31, 1=Extended 29 bit ID, 0=Standard 11 bit ID

Control Byte 1
7 6 5 4 3 2 1 0 Bit position

 BUKT: Rollover enable. If the message object being set is

message object zero within the MCP2515 and you want any
incoming messages to ‘rollover’ to message object 1 if
message object 0 is full, set this bit.

 Bits 1 and 2 control the mode with the following:
11 = Turn mask/filters off, receive all messages
10 = Receive only 29 bit IDs that meet filter req.
01 = Receive only 11 bit IDs that meet filter req.
00 = Receive either 11 or 29 bit ID’s that meet filt.

 1=Extended 29 bit ID, 0=Standard 11 bit ID
 Message object to use (0 or 1 for MCP2515)

NOTE: Due to a previous discrepancy between two firmware versions in regards to
the setting of the flag to indicate a 29 bit ID’s, you can now set either bit (bit 31 in

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

the ID AND/OR bit 3 in Control Byte 1. If both bits are set to zero the resulting
CAN packet will be 11 bit.

Declaring this function in Visual Basic

Private Declare Function RecCANMess Lib “ZCAN4USBFX.dll" (
 ByVal InterfaceNum As Byte,
 ByVal DeviceNum As Byte,
 ByVal ID As Long,
 ByVal CB1 As Byte)
 As Integer

Calling this function from Visual Basic

result = RecCANMess(InterfaceNum, DeviceNum, ID, CB1)
where InterfaceNum, DeviceNum, CB1 are declared as Byte variables and result is
declared as an integer variable. ID is a Long.

example:
Dim ID As Long
Dim CB1 As Byte
ID = &H80004130 ‘ made up 29 bit ID
CB1 = 0 ‘ message object 0, no BUKT, receive either 11 or 29 bit
result = RecCANMess(InterfaceNum, DeviceNum, ID, CB1)

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

GetCANMess(age)
 After a receive message object has been set up and an incoming message has been
received and stored into the RAM buffer within the CAN-4-USB/FXdevice, this function
will retrieve the oldest message.

The C function within the DLL looks like this
short int __stdcall
 GetCANMess(
 unsigned char InterfaceNum,
 unsigned char DeviceNum,
 unsigned char *Buffer
)

InterfaceNum(ber) will be a value from 0-9 for depending on how many CAN-4-
USB/FXdevices are connected to the same computer. If there is only one device, this
value should be set to zero.
DeviceNum(ber) is a future option for devices that will incorporate more than one CAN
controller on a single device. For now, use the value zero.
Buffer is your user buffer that will be filled with the oldest received message (if present).
Make sure this buffer is pre-defined to be at least 20 bytes long or the DLL will over
write your memory space.
Note: The data returned from this function is increased from previous versions of the DLL due to the
addition of the optional Time Stamp data being returned.

Declaring this function in Visual Basic

Private Declare Function GetCANMess Lib "ZCAN4USBFX.dll" (
 ByVal InterfaceNum As Byte,
 ByVal DeviceNum As Byte,
 ByRef buffer As Byte)
 As Integer

Note: Make sure buffer is declared as ByRef.

Calling this function from Visual Basic

result = GetCANMess(InterfaceNum, DeviceNum, buffer(0))
where InterfaceNum and DeviceNum are declared as Byte variables and result is declared
as an integer variable. Buffer is a Byte declared array of at least 16 bytes

example:
Dim buffer(65) As Byte
Dim result As Integer

result = GetCANMess(InterfaceNum, DeviceNum, buffer(0))

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

Returned Values
The following values are returned
Negative value (see error table at beginning of document)
0= no new messages in buffer
1= means the oldest message has been saved to your buffer according to the following
 format

Byte loc. Name
0 Number of bytes in this message including this byte
1 Control Byte 1
2 Control Byte 2
3 CAN ID 1st (MS) Byte according to format below
4 CAN ID 2nd Byte
5 CAN ID 3rd Byte
6 CAN ID 4th Byte
7… Data bytes from 0-8 if present
n 3 Byte optional Time Stamp data

Control Byte 1
7 6 5 4 3 2 1 0 Bit position

 Number of data bytes (0-8)
 The upper 4 bits are the Message object

Control Byte 2
7 6 5 4 3 2 1 0 Bit position

 Reserved
 Reserved
 Reserved
 Reserved
 SRR (taken from bit 4, RXBnSIDL)
 Buffer overflow: This message over wrote the oldest message
 RTR (taken from bit 6, RXBnDLC)
 IDE (taken from bit 3, RXBnSIDL)

Please see the MCP2515 data sheets for more information on these status bits.

Note: Bit 5 is new for the CAN-4-USB/FX model. The incoming CAN message
buffer will eventually loop around and overwrite the oldest message that has not
been downloaded to the PC. When a new message is written over the old message,
the new message has bit 5 set to show that an old message was lost. The status LED
will also blink a quick red pulse to show that at least one message was lost and will
continue to blink until the Reset command is used or the interface is unplugged.

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

CAN ID
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

 Standard 11 bit ID
Extended 29 bit ID

^
|
| Bit 29, reserved for future use

^
|
|
| Bit 30, reserved for future use

^
|
|
|
| Bit 31, 1=Extended 29 bit ID, 0=Standard 11 bit ID

Note: The IDE bit (bit 7) from Control Byte 2 and the Bit 31 from the CAN ID are the
same bit.

Time Stamp
 If the optional time stamp feature is enabled, there will be an additional 3 bytes
that represent the time stamp for the received CAN message in 8 microsecond
increments. This value will increment to 100 seconds and then roll over to zero. In order
to determine whether the Time Stamp data is present in the packet, your software can
compare the number of bytes returned (first byte of the returned buffer) and the number
of bytes in the CAN message. For example, if the number of bytes in the entire packet is
equal to the number of bytes in the CAN message plus 10, then the time stamp is present.
(because there are 10 bytes in the header + time stamp)
 One method for calculating the Time Stamp value would be to take the 3 bytes of
data and use the following VB formula
NumBytes = DataBuf(1) And &HF ' get DLC, actual number of bytes in packet
If DataBuf(0) = NumBytes + 10 Then ' check if there are three extra bytes (timestamp)
 ' because packet will consist of 1Numbytes+Data+4ID+2CB+3 time stamp
TimeStamp = DataBuf(7 + NumBytes) * 0.524288
TimeStamp = TimeStamp + (DataBuf(8 + NumBytes) * 0.002048)
TimeStamp = TimeStamp + (DataBuf(9 + NumBytes) * 0.000008)

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

ReadReg(ister)
 This function will read one or more registers from the CAN controller up to a
maximum of 62 bytes. By sending a starting address, the number of bytes and an empty
Byte array, the DLL will fill your array with the values read back from the CAN
controller.

The C function within the DLL looks like this
short int __stdcall
 ReadReg(
 unsigned char InterfaceNum,
 unsigned char DeviceNum,
 unsigned char Address,
 unsigned char Numbytes,
 unsigned char *buffer
)

InterfaceNum(ber) will be a value from 0-9 for depending on how many CAN-4-
USB/FXdevices are connected to the same computer. If there is only one device, this
value should be set to zero.
DeviceNum(ber) is a future option for devices that will incorporate more than one CAN
controller on a single device. For now, use the value zero.
Address is the start address of the CAN register to be read from.
Numbytes is the number of bytes to read back from 1-62.
Buffer is your user buffer that will be filled with the data read. Make sure this buffer is
pre-defined to be at least as long as the number of bytes that are being requested, if not,
the DLL will over write your memory space.

Declaring this function in Visual Basic

Private Declare Function ReadReg Lib "ZCAN4USBFX.dll" (
 ByVal InterfaceNum As Byte,
 ByVal DeviceNum As Byte,
 ByVal Address As Byte,
 ByVal NumBytes As Byte,
 ByRef buffer As Byte)
 As Integer

Note: Make sure buffer is declared as ByRef.

Calling this function from Visual Basic

result = ReadReg(InterfaceNum, DeviceNum, Address, NumBytes, buffer(0))
where InterfaceNum, DeviceNum, Address & Numbytes are declared as Byte variables
and result is declared as an integer variable. Buffer is a Byte declared array of at least as
large as the number of bytes being requested.

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

example:
Dim buffer(65) As Byte 'we'll send an empty buffer and the function will fill it
Dim result As Integer
Dim Address As Byte
Dim NumBytes As Byte

Address = 0 ' starting address within the CAN controller 0-255
NumBytes = 4 ' hardcoded as an example

result = ReadReg(InterfaceNum, DeviceNum, Address, NumBytes, buffer(0))

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

WriteReg(ister)
 This function will write one or more registers into the CAN controller up to a
maximum of 62 bytes. By sending a starting address, the number of bytes and a Byte
array with data, the DLL will write the data to the CAN controller. Note that the function
will not read back or verify the data written due to the fact that for some registers the
value read back may not match the value written due to changing bits or non write-able
bits. Also note that the CAN controller will be put into the proper configuration mode in
order to write to registers that are normally protected.

The C function within the DLL looks like this
short int __stdcall
 WriteReg(
 unsigned char InterfaceNum,
 unsigned char DeviceNum,
 unsigned char Address,
 unsigned char Numbytes,
 unsigned char *buffer
)

InterfaceNum(ber) will be a value from 0-9 for depending on how many CAN-4-
USB/FXdevices are connected to the same computer. If there is only one device, this
value should be set to zero.
DeviceNum(ber) is a future option for devices that will incorporate more than one CAN
controller on a single device. For now, use the value zero.
Address is the start address of the CAN register to write to.
Numbytes is the number of bytes to write to from 1-62.
Buffer is your user buffer that will contain the data to be written.

Declaring this function in Visual Basic

Private Declare Function WriteReg Lib "ZCAN4USBFX.dll" (
 ByVal InterfaceNum As Byte,
 ByVal DeviceNum As Byte,
 ByVal Address As Byte,
 ByVal NumBytes As Byte,
 ByRef buffer As Byte)
 As Integer

Calling this function from Visual Basic

result = WriteReg(InterfaceNum, DeviceNum, Address, NumBytes, buffer(0))

where InterfaceNum, DeviceNum, Address & Numbytes are declared as Byte variables
and result is declared as an integer variable. Buffer is a Byte declared array.

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

example:
Dim buffer(65) As Byte
Dim result As Integer
Dim Address As Byte
Dim NumBytes As Byte

Address = 0 ' starting address within the CAN controller 0-255
NumBytes = 4 ' hardcoded as an example
buffer(0) = &H11
buffer(1) = &H22
buffer(2) = &H33
buffer(3) = &H44

result = WriteReg(InterfaceNum, DeviceNum, Address, NumBytes, buffer(0))

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

GetNumCANMess(ages)
 This function will return a value representing the number of messages that are
currently being stored in the RAM buffer. This function does not return any of the
messages.

The C function within the DLL looks like this
short int __stdcall
 GetNumCANMess(
 unsigned char InterfaceNum,
 unsigned char DeviceNum
)

InterfaceNum(ber) will be a value from 0-9 for depending on how many CAN-4-
USB/FXdevices are connected to the same computer. If there is only one device, this
value should be set to zero.
DeviceNum(ber) is a future option for devices that will incorporate more than one CAN
controller on a single device. For now, use the value zero.

Declaring this function in Visual Basic

Private Declare Function GetNumCANMess Lib "ZCAN4USBFX.dll" (
 ByVal InterfaceNum As Byte,
 ByVal DeviceNum As Byte)
 As Integer

Calling this function from Visual Basic

result = GetNumCANMess(InterfaceNum, DeviceNum)

where InterfaceNum & DeviceNum as Byte variables and result is declared as an integer
variable.

example:
Dim result As Integer

result = GetNumCANMess(InterfaceNum, DeviceNum)

Returned Values
A negative returned value is an error according to the table a the beginning of this
document.
0 means no messages in buffer
>0 is the number of messages in buffer

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

ClearCANMess(ages)
 This function will clear the receive buffer of all messages. This function does not
return any of the messages.

The C function within the DLL looks like this
short int __stdcall
 ClearCANMess(
 BYTE InterfaceNum,
 BYTE DeviceNum
)

InterfaceNum(ber) will be a value from 0-9 for depending on how many CAN-4-
USB/FXdevices are connected to the same computer. If there is only one device, this
value should be set to zero.
DeviceNum(ber) is a future option for devices that will incorporate more than one CAN
controller on a single device. For now, use the value zero.

Declaring this function in Visual Basic

Private Declare Function ClearCANMess Lib "ZCAN4USBFX.dll" (
 ByVal InterfaceNum As Byte,
 ByVal DeviceNum As Byte)
 As Integer

Calling this function from Visual Basic

result = ClearCANMess(InterfaceNum, DeviceNum)

where InterfaceNum & DeviceNum as Byte variables and result is declared as an integer
variable.

example:
Dim result As Integer

result = ClearCANMess(InterfaceNum, DeviceNum)

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

GetInfo
 This function will retrieve information about this device including firmware
version, feature bits, manufacture’s name and type(s) of CAN controllers. New for this
version is the ability to show whether the device is running in USB Full Speed mode or
USB High Speed mode (480Mbps)

The C function within the DLL looks like this
short int __stdcall
 GetInfo(
 unsigned char InterfaceNum,
 unsigned char DeviceNum,
 unsigned char *Version,
 unsigned char Feature ,
 unsigned char *Manufact,
 unsigned char *CANCont
)

InterfaceNum(ber) will be a value from 0-9 for depending on how many CAN-4-
USB/FX devices are connected to the same computer. If there is only one device, this
value should be set to zero.
DeviceNum(ber) is a future option for devices that will incorporate more than one CAN
controller on a single device. For now, use the value zero.
Version is a pointer to a three byte array.
Feature is a pointer to a single byte variable that the function will write to based on the
available features of this interface.
Manufact(ure) is a pointer to a byte array that will be filled with up to a 20 characters of
the name of the manufacture. This is in an effort to create a more standard protocol. This
array should be pre-defined to be at least 21 characters long.
CANCont(rollers) is a byte array that will contain the number of CAN controllers and
the type of CAN controllers. This array should be pre-defined to be at least 10 characters
long.

Declaring this function in Visual Basic

Private Declare Function GetInfo Lib "ZCAN4USBFX.dll" (
 ByVal InterfaceNum As Byte,
 ByVal DeviceNum As Byte,
 ByRef Version As Byte,
 ByRef Feature As Byte,
 ByRef Manufact As Byte,
 ByRef CANCont As Byte)
 As Integer

Calling this function from Visual Basic

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

result = GetInfo(InterfaceNum, DeviceNum, Version(0), Feature, Manufact(0),
CANCont(0))

where InterfaceNum & DeviceNum as Byte variables and result is declared as an integer
variable. Version is a 3 byte array, feature is a byte variable, manufacture is a 21 byte
array and CANCont is a 10 byte array.

example:
Dim result As Integer
Dim Version(3) As Byte
Dim Feature As Byte
Dim Manufact(22) As Byte ' make sure this is at least 21 bytes long
Dim CANCont(10) As Byte ' first byte is number of CAN controllers, 2nd+=type

result = GetInfo(InterfaceNum, DeviceNum, Version(0), Feature, Manufact(0),
CANCont(0))

See sample program for complete details.

Version
Byte loc. Name
0 Major version number
1 Minor version number

Feature Flags:
7 6 5 4 3 2 1 0 Bit position

 If =1 then capable of time stamping incoming CAN message

(CAN-4-USB/FX-MCP2515 is capable of this)
 If =1 then capable of generating an interrupt upon reception

of a CAN message (this applies to a RS232 device, not a USB
device)

 If =1 then capable of full duplex communication (this applies
to a RS232 device, not a USB device)

 Reserved
 Reserved
 Reserved
 Reserved
 Reserved

Manufacturer
The CAN-4-USB/FX-MCP2515 will return one of two normal messages or two error messages, depending
on the current speed of the device which is determined by what kind of USB port it is plugged into
Normal:
For USB Hi Speed port “Zanthic FX@HS” (480Mbps)
For USB Full Speed “Zanthic FX@FS” (12Mbps)
Error:
RAM buffer failure will return “Zanthic FX RAM FAIL”
CAN controller failure will return “Zanthic CAN FAIL”

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

CAN Controller
Byte loc. Name
0 Number of CAN controllers in this device
1 Type of CAN controller from following list
2… If more than one CAN controller present, list the type in next bytes

Type of CAN Controller: (This list is taken from the CANPIE specification)
Value returned CAN Controller Manufacturer
0 82C200 Philips
1 SJA1000 Philips
2 80C591 Philips
3 80C592 Philips

16 (0x10) MCP2510 MicroChip
21 (0x15) MCP2515 MicroChip
20 C505C Infineon

22 C161 Infineon
23 C164 Infineon
24 C167 Infineon
25 81C90 Infineon
26 81C91 Infineon

40 AN82527 Intel
41 AN87C196CA Intel
42 AN87C196CB Intel

60 68HC05 Motorola
61 68HC08 Motorola
62 68HC912 Motorola
63 68376 Motorola
64 MPC555 Motorola

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

SetFilters
 This function allows you to program the acceptance filters and masks within the
CAN controller. Although you could write directly to the registers using the WriteReg,
the SetFilters function will format the data from a 4 byte ID to the proper configuration
within the registers of the MCP2515 (saving you the hassle). The low level protocol
actually allows us to write up to 8 filters with one command but this function is fixed as
one at a time. The reason is because you don't need to do this more than once at startup
(usually) so speed is not required. Note that the filter you are programming is identified
with the value in FilterNum, FilterNum=0 for RXF0, =1 for RXF1 etc. Note also that the
filterVal is either an 11 bit value (right justified) or a 29 bit value (right justified). If a 29
bit value is used, set the MSB. The function will look after putting the bits in the correct
registers for you as noted above. If you read the values back directly using the ReadReg
command, they may not be the same as the MCP2515 has a non-standard way of storing
the values.

The C function within the DLL looks like this
short int __stdcall
 SetFilters(
 unsigned char InterfaceNum,
 unsigned char DeviceNum,
 unsigned char FilterNum,
 long FilterVal
)

InterfaceNum(ber) will be a value from 0-9 for depending on how many CAN-4-
USB/FX devices are connected to the same computer. If there is only one device, this
value should be set to zero.
DeviceNum(ber) is a future option for devices that will incorporate more than one CAN
controller on a single device. For now, use the value zero.
FilterNum(ber) will be a value between 0 and 5 for the MCP2510
FilterVal(ue) will be an 11 or 29 bit filter value as shown below

FilterNum Values
Byte loc. Name
0 Acceptance Filter RXF0
1 Acceptance Filter RXF1
2 Acceptance Filter RXF2
3 Acceptance Filter RXF3
4 Acceptance Filter RXF4
5 Acceptance Filter RXF5

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

FilterVal
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

 Standard 11 bit ID
Extended 29 bit ID

^
|
| Bit 29, reserved for future use

^
|
|
| Bit 30, reserved for future use

^
|
|
|
| Bit 31, 1=Extended 29 bit ID, 0=Standard 11 bit ID

Declaring this function in Visual Basic
Private Declare Function SetFilters Lib "ZCAN4USBFX.dll" (
 ByVal InterfaceNum As Byte,
 ByVal DeviceNum As Byte,
 ByVal FilterNum As Byte,
 ByVal FilterVal As Long)
 As Integer

Calling this function from Visual Basic

result = SetFilters(InterfaceNum, DeviceNum, FilterNum, FilterVal)

where InterfaceNum & DeviceNum as Byte variables and result is declared as an integer
variable. Filternum is a byte variable and FilterVal is a long.

example:
Dim result As Integer
Dim FilterVal As Long
Dim FilterNum As Byte

FilterVal = &H80000000 ' set high to mark this as 29 bit
FilterVal = FilterVal + &H11223344 ' 29 bit
'FilterVal=&H7FF ' 11 bit
FilterNum = 0 ' hardcoded as an example
result = SetFilters(InterfaceNum, DeviceNum, FilterNum, FilterVal)

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

New Commands to the CAN-4-USB FX interface

EnableTS
 This function will enable the time stamp feature. Each incoming CAN message
will be assigned a timer value with a 8 micro second resolution. This 24bit value will
count to 100 seconds and then roll over to zero

The C function within the DLL looks like this
short int __stdcall
 EnableTS(
 BYTE InterfaceNum,
 BYTE DeviceNum
)

InterfaceNum(ber) will be a value from 0-9 for depending on how many CAN-4-
USB/FXdevices are connected to the same computer. If there is only one device, this
value should be set to zero.
DeviceNum(ber) is a future option for devices that will incorporate more than one CAN
controller on a single device. For now, use the value zero.

Declaring this function in Visual Basic

Private Declare Function EnableTS Lib "ZCAN4USBFX.dll" (
 ByVal InterfaceNum As Byte,
 ByVal DeviceNum As Byte)
 As Integer

Calling this function from Visual Basic

result = EnableTS(InterfaceNum, DeviceNum)

where InterfaceNum & DeviceNum as Byte variables and result is declared as an integer
variable.

example:
Dim result As Integer

result = EnableTS(InterfaceNum, DeviceNum)

Zanthic Technologies Inc. Phone 403-526-8318 www.zanthic.com

DisableTS
 This function will disable the time stamp feature.
The C function within the DLL looks like this
short int __stdcall
 DisableTS(
 BYTE InterfaceNum,
 BYTE DeviceNum
)

InterfaceNum(ber) will be a value from 0-9 for depending on how many CAN-4-
USB/FXdevices are connected to the same computer. If there is only one device, this
value should be set to zero.
DeviceNum(ber) is a future option for devices that will incorporate more than one CAN
controller on a single device. For now, use the value zero.

Declaring this function in Visual Basic

Private Declare Function DisableTS Lib "ZCAN4USBFX.dll" (
 ByVal InterfaceNum As Byte,
 ByVal DeviceNum As Byte)
 As Integer

Calling this function from Visual Basic

result = DisableTS(InterfaceNum, DeviceNum)

where InterfaceNum & DeviceNum as Byte variables and result is declared as an integer
variable.

example:
Dim result As Integer

result = DisableTS(InterfaceNum, DeviceNum)

